Identifying Neisseria Species by Use of the 50S Ribosomal Protein L6 (rplF) Gene

نویسندگان

  • Julia S. Bennett
  • Eleanor R. Watkins
  • Keith A. Jolley
  • Odile B. Harrison
  • Martin C. J. Maiden
چکیده

The comparison of 16S rRNA gene sequences is widely used to differentiate bacteria; however, this gene can lack resolution among closely related but distinct members of the same genus. This is a problem in clinical situations in those genera, such as Neisseria, where some species are associated with disease while others are not. Here, we identified and validated an alternative genetic target common to all Neisseria species which can be readily sequenced to provide an assay that rapidly and accurately discriminates among members of the genus. Ribosomal multilocus sequence typing (rMLST) using ribosomal protein genes has been shown to unambiguously identify these bacteria. The PubMLST Neisseria database (http://pubmlst.org/neisseria/) was queried to extract the 53 ribosomal protein gene sequences from 44 genomes from diverse species. Phylogenies reconstructed from these genes were examined, and a single 413-bp fragment of the 50S ribosomal protein L6 (rplF) gene was identified which produced a phylogeny that was congruent with the phylogeny reconstructed from concatenated ribosomal protein genes. Primers that enabled the amplification and direct sequencing of the rplF gene fragment were designed to validate the assay in vitro and in silico. Allele sequences were defined for the gene fragment, associated with particular species names, and stored on the PubMLST Neisseria database, providing a curated electronic resource. This approach provides an alternative to 16S rRNA gene sequencing, which can be readily replicated for other organisms for which more resolution is required, and it has potential applications in high-resolution metagenomic studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selection of suitable reference genes for real-time PCR studies of early developmental stages of sturgeons

In quantitative real-time PCR, the mRNA level can be quantified in relative terms based on the expression ratio of mRNAs of the target gene and an internal reference gene. Since, an internal standard should be expressed at a constant level among different tissues of an organism at all stages of development, and should be unaffected by the experimental treatment, the stability of different refer...

متن کامل

Management of Typhoid Fever and Bacterial Meningitis by Chloramphenicol in Infants and Children

Chloramphenicol inhibits protein synthesis in bacteria and is usually bacteriostatic but is bactericidal against Haemophilus influenzae, Streptococcus pneumoniae, and Neisseria meningitis. Chloramphenicol penetrates all body tissues well. The cerebrospinal fluid concentration averages 60% of the serum level, while brain levels are 9 times higher because of high lipid solubility of this drug. Ch...

متن کامل

Functional Interaction between Ribosomal Protein L6 and RbgA during Ribosome Assembly

RbgA is an essential GTPase that participates in the assembly of the large ribosomal subunit in Bacillus subtilis and its homologs are implicated in mitochondrial and eukaryotic large subunit assembly. How RbgA functions in this process is still poorly understood. To gain insight into the function of RbgA we isolated suppressor mutations that partially restored the growth of an RbgA mutation (R...

متن کامل

Pharyngeal carriage of Neisseria species in the African meningitis belt

OBJECTIVES Neisseria meningitidis, together with the non-pathogenic Neisseria species (NPNs), are members of the complex microbiota of the human pharynx. This paper investigates the influence of NPNs on the epidemiology of meningococcal infection. METHODS Neisseria isolates were collected during 18 surveys conducted in six countries in the African meningitis belt between 2010 and 2012 and cha...

متن کامل

High Level Expression of Recombinant Ribosomal Protein (L7/L12) from Brucella abortus and Its Reaction with Infected Human Sera

Brucellosis, caused by Brucella spp., is an important zoonotic disease that causes abortion and infertility in cattle and undulant fever in humans. Various studies have examined cell-free native and recombinant proteins as candidate protective antigens in animal models. Among Brucella immunogenes, antigen based on ribosomal preparation has been widely investigated. In this study, the immunogeni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2014